Zusammenfassung
Hyperhomocysteinämie gilt als etablierter Risikofaktor für kardiovaskuläre wie neurodegenerative
Erkrankungen. Eine Verminderung des kardiovaskulären Risikos durch Senkung des Homocysteinspiegels
mit B-Vitaminen konnte allerdings in vielen Sekundär-Präventionsstudien nicht gezeigt
werden, möglicherweise aufgrund der fehlenden statistischen Power von Einzelstudien.
Metaanalysen mit einer großen Patientenzahl liefern zuverlässigere Aussagen. Eine
aktuelle Metaanalyse hat gezeigt, dass das kardiovaskuläre Risiko nur bei Patienten
ohne Aspirineinnahme um 7 % signifikant gesenkt wurde. In der Sekundärprävention,
wo Aspirin routinemäßig verordnet wird, bewirkt Folsäure daher keine zusätzliche Risikosenkung.
Hyperhomocysteinämie ist ebenfalls ein Risikofaktor für Schlaganfall oder stummen
Hirninfarkt. Große Metaanalysen berichten für Folsäuretherapie eine milde Prävention
von Schlaganfällen, die deutlicher bei nicht sekundärer Prävention und Männern gefunden
wurde (16 % Risikoreduktion). Eine Verbesserung der kognitiven Leistung durch B-Vitamine
ist ebenfalls vielfach gezeigt worden. Insgesamt besteht aber großer Forschungsbedarf,
um zu zeigen, ob v. a. bei älteren Menschen mittels B-Vitaminen eine Verbesserung
kognitiver Leistungen wie auch eine Verzögerung der Entwicklung von Demenzerkrankungen
erreichbar ist.
Schlüsselwörter
Homocystein - Demenz - Schlaganfall - Folsäure - Vitamin B12
- Vitamin B6
Literatur
- 1
Wald D S, Law M, Morris J K.
Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis.
BMJ.
2002;
325
1202
- 2
de Bree A, Verschuren W M, Kromhout D et al..
Homocysteine determinants and the evidence to what extent homocysteine determines
the risk of coronary heart disease.
Pharmacol Rev.
2002;
54
599-618
- 3
Seshadri S, Wolf P A, Beiser A S et al..
Association of plasma total homocysteine levels with subclinical brain injury: cerebral
volumes, white matter hyperintensity, and silent brain infarcts at volumetric magnetic
resonance imaging in the Framingham Offspring Study.
Arch Neurol.
2008;
65
642-649
- 4
Vogiatzoglou A, Refsum H, Johnston C et al..
Vitamin B12 status and rate of brain volume loss in community-dwelling elderly.
Neurology.
2008;
71
826-832
- 5
Obeid R, Schorr H, Eckert R, Herrmann W.
Vitamin B12 status in the elderly as judged by available biochemical markers.
Clin Chem.
2004;
50
238-241
- 6
Righetti M, Serbelloni P, Milani S, Ferrario G.
Homocysteine-lowering vitamin B treatment decreases cardiovascular events in hemodialysis
patients.
Blood Purif.
2006;
24
379-386
- 7
Obeid R, Kuhlmann M K, Kohler H, Herrmann W.
Response of homocysteine, cystathionine, and methylmalonic acid to vitamin treatment
in dialysis patients.
Clin Chem.
2005;
51
196-201
- 8
Herrmann W, Schorr H, Obeid R et al..
Disturbed homocysteine and methionine cycle intermediates s-adenosylhomocysteine and
s-adenosylmethionine are related to degree of renal insufficiency in type 2 diabetes.
Clin Chem.
2005;
51
891-897
- 9
Bonaa K H, Njolstad I, Ueland P M et al..
Homocysteine lowering and cardiovascular events after acute myocardial infarction.
N Engl J Med.
2006;
354
1578-1588
- 10
Toole J F, Malinow M R, Chambless L E et al..
Lowering homocysteine in patients with ischemic stroke to prevent recurrent stroke,
myocardial infarction, and death: the Vitamin Intervention for Stroke Prevention (VISP)
randomized controlled trial.
JAMA.
2004;
291
565-575
- 11
Lonn E, Yusuf S, Arnold M J et al..
Homocysteine lowering with folic acid and B vitamins in vascular disease.
N Engl J Med.
2006;
354
1567-1577
- 12
Ebbing M, Bleie O, Ueland P M et al..
Mortality and cardiovascular events in patients treated with homocysteine-lowering
B vitamins after coronary angiography: a randomized controlled trial.
JAMA.
2008;
300
795-804
- 13
Albert C M, Cook N R, Gaziano J M et al..
Effect of folic acid and B vitamins on risk of cardiovascular events and total mortality
among women at high risk for cardiovascular disease: a randomized trial.
JAMA.
2008;
299
2027-2036
- 14
Wald D S, Morris J K, Wald N J.
Reconciling the evidence on serum homocysteine and ischaemic heart disease: a meta-analysis.
PLoS ONE.
2011;
6
e16473
- 15
Wimo A, Winblad B, Aguero-Torres H, Strauss E von.
The magnitude of dementia occurrence in the world.
Alzheimer Dis Assoc Disord.
2003;
17
63-67
- 16
Seubert P, Vigo-Pelfrey C, Esch F et al..
Isolation and quantification of soluble Alzheimer‘s beta-peptide from biological fluids.
Nature.
1992;
359
325-327
- 17
Hardy J, Selkoe D J.
The amyloid hypothesis of Alzheimer‘s disease: progress and problems on the road to
therapeutics.
Science.
2002;
297
353-356
- 18
Tanemura K, Akagi T, Murayama M et al..
Formation of filamentous tau aggregations in transgenic mice expressing V337M human
tau.
Neurobiol Dis.
2001;
8
1036-1045
- 19
Sachdev P S.
Homocysteine and brain atrophy.
Prog Neuropsychopharmacol Biol Psychiatry.
2005;
29
1152-1161
- 20
Wright C B, Paik M C, Brown T R et al..
Total homocysteine is associated with white matter hyperintensity volume: the Northern
Manhattan Study.
Stroke.
2005;
36
1207-1211
- 21
Smith A D.
The worldwide challenge of the dementias: a role for B vitamins and homocysteine?.
Food Nutr Bull.
2008;
29
(S 2)
S143-S172
- 22
Refsum H, Nurk E, Smith A D et al..
The Hordaland Homocysteine Study: a community-based study of homocysteine, its determinants,
and associations with disease.
J Nutr.
2006;
136
(S 6)
1731S-1740S
- 23
Herrmann W, Quast S, Ullrich M et al..
Hyperhomocysteinemia in high-aged subjects: relation of B-vitamins, folic acid, renal
function and the methylenetetrahydrofolate reductase mutation.
Atherosclerosis.
1999;
144
91-101
- 24
Hogervorst E, Ribeiro H M, Molyneux A et al..
Plasma homocysteine levels, cerebrovascular risk factors, and cerebral white matter
changes (leukoaraiosis) in patients with Alzheimer disease.
Arch Neurol.
2002;
59
787-793
- 25
Polyak Z, Stern F, Berner Y N et al..
Hyperhomocysteinemia and vitamin score: correlations with silent brain ischemic lesions
and brain atrophy.
Dement Geriatr Cogn Disord.
2003;
16
39-45
- 26
Matsui T, Arai H, Yuzuriha T et al..
Elevated plasma homocysteine levels and risk of silent brain infarction in elderly
people.
Stroke.
2001;
32
1116-1119
- 27
Bots M L, Launer L J, Lindemans J et al..
Homocysteine and short-term risk of myocardial infarction and stroke in the elderly:
the Rotterdam Study.
Arch Intern Med.
1999;
159
38-44
- 28
Verhoef P, Hennekens C H, Malinow M R et al..
A prospective study of plasma homocyst(e)ine and risk of ischemic stroke.
Stroke.
1994;
25
1924-1930
- 29
Sacco R L, Anand K, Lee H S et al..
Homocysteine and the risk of ischemic stroke in a triethnic cohort: the Northern Manhattan
Study.
Stroke.
2004;
35
2263-2269
- 30
Giles W H, Croft J B, Greenlund K J et al..
Total homocyst(e)ine concentration and the likelihood of nonfatal stroke: results
from the Third National Health and Nutrition Examination Survey, 1988–1994.
Stroke.
1998;
29
2473-2477
- 31
Vermeer S E, Dijk E J van, Koudstaal P J et al..
Homocysteine, silent brain infarcts, and white matter lesions: The Rotterdam Scan
Study.
Ann Neurol.
2002;
51
285-289
- 32
Vermeulen E G, Stehouwer C D, Valk J et al..
Effect of homocysteine-lowering treatment with folic acid plus vitamin B on cerebrovascular
atherosclerosis and white matter abnormalities as determined by MRA and MRI: a placebo-controlled,
randomized trial.
Eur J Clin Invest.
2004;
34
256-261
- 33
Saposnik G, Ray J G, Sheridan P et al..
Homocysteine-lowering therapy and stroke risk, severity, and disability. Additional
findings from the HOPE 2 trial.
Stroke.
2009;
40
1365-1372
- 34
Wang X, Qin X, Demirtas H et al..
Efficacy of folic acid supplementation in stroke prevention: a meta-analysis.
Lancet.
2007;
369
1876-1882
- 35
Lee M, Hong K S, Chang S C, Saver J L.
Efficacy of homocysteine-lowering therapy with folic acid in stroke prevention: a
meta-analysis.
Stroke.
2010;
41
1205-1212
- 36
Yang Q, Botto L D, Erickson J D et al..
Improvement in stroke mortality in Canada and the United States, 1990 to 2002.
Circulation.
2006;
113
1335-1343
- 37
Nicolia V, Fuso A, Cavallaro R A et al..
B vitamin deficiency promotes tau phosphorylation through regulation of GSK3beta and
PP2A.
J Alzheimers Dis.
2010;
19
895-907
- 38
Zhang C E, Tian Q, Wei W et al..
Homocysteine induces tau phosphorylation by inactivating protein phosphatase 2A in
rat hippocampus.
Neurobiol Aging.
2008;
29
1654-1665
- 39
Obeid R, Schadt A, Dillmann U et al..
Methylation status and neurodegenerative markers in Parkinson disease.
Clin Chem.
2009;
55
1852-1860
- 40
Obeid R, Kasoha M, Knapp J P et al..
Folate and methylation status in relation to phosphorylated tau protein(181P) and
beta-amyloid(1 – 42) in cerebrospinal fluid.
Clin Chem.
2007;
53
1129-1136
- 41
Obeid R, Herrmann W.
Mechanisms of homocysteine neurotoxicity in neurodegenerative diseases with special
reference to dementia.
FEBS Lett.
2006;
580
2994-3005
- 42
Ravaglia G, Forti P, Maioli F et al..
Homocysteine and folate as risk factors for dementia and Alzheimer disease.
Am J Clin Nutr.
2005;
82
636-643
- 43
Seshadri S, Beiser A, Selhub J et al..
Plasma homocysteine as a risk factor for dementia and Alzheimer‘s disease.
N Engl J Med.
2002;
346
476-483
- 44
Smith A D, Smith S M, de Jager C A et al..
Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in
mild cognitive impairment: a randomized controlled trial.
PLoS ONE.
2010;
5
e12244
Prof. Dr. Wolfgang Herrmann
Klinische Chemie und Laboratoriumsmedizin
Universitätsklinikum des Saarlandes
66424 Homburg
Email: kchwher@uks.eu
Prof. Dr. Rima Obeid
Klinische Chemie und Laboratoriumsmedizin
Universitätsklinikum des Saarlandes
66424 Homburg